zcmimi's blog
查看原题

点击跳转

思路剧毒无比

f[i][j]表示在i的子树中,i所在的连体块大小为j\frac{\text{最大得分}}{j}

f[i][j] = \max(f[i][k] \times f[to][j-k])

f[i][0] = \max(f[i][0],f[i][j] \times j)

还没完

吐血的是还要写高精

#include<bits/stdc++.h>
namespace ZDY{
    #pragma GCC optimize(3)
    #define il __inline__ __attribute__ ((always_inline))
    #define rg register
    #define ll long long
    #define ull unsigned long long
    #define db double
    #define sht short
    #define MB template <class T>il
    #define Fur(i,x,y) for(int i=x;i<=y;++i)
    #define Fdr(i,x,y) for(int i=x;i>=y;--i)
    #define fl(i,x) for(int i=head[x],to;to=e[i].to,i;i=e[i].nxt)
    #define clr(x,y) memset(x,y,sizeof(x))
    #define cpy(x,y) memcpy(x,y,sizeof(x))
    #define fin(s) freopen(s".in","r",stdin)
    #define fout(s) freopen(s".out","w",stdout)
    #define fcin ios::sync_with_stdio(false)
    #define l2(n) ((int)(log2(n)))
    #define inf 2122219134
    MB T ABS(T x){return x>0?x:-x;}
    MB T MAX(T x,T y){return x>y?x:y;}
    MB T MIN(T x,T y){return x<y?x:y;}
    MB T GCD(T x,T y){return y?GCD(y,x%y):x;}
    MB void SWAP(T &x,T &y){T t=x;x=y;y=t;}
}using namespace ZDY;using namespace std;
namespace IO{const char* ln="\n";const int str=1<<20;struct IN{char buf[str],*s,*t;bool _;IN():s(buf),t(buf),_(0){}il char gc(){return s==t&&((t=(s=buf)+fread(buf,1,str,stdin))==s)?EOF:(*s++);}IN&operator>>(char&ch){if(_)return *this;char c;while((c=gc())!=EOF&&isspace(c));if(c==EOF)_=1;else ch=c;return *this;}IN& operator>>(char* ch){clr(ch,0);if(_)return *this;char c;while((c=gc())!=EOF&&isspace(c));if(c==EOF)return _=1,*this;*ch=c;ch++;while((c=gc())!=EOF&&!isspace(c))*ch=c,ch++;if(c==EOF)_=1;return *this;}IN& operator>>(string& ch){if(_)return *this;char c;while((c=gc())!=EOF&&isspace(c));if(c==EOF)return _=1,*this;ch+=c;while((c=gc())!=EOF&&!isspace(c))ch+=c;if(c==EOF)_=1;return *this;}template<typename T>IN&operator>>(T&x){if(_)return *this;char c=gc();bool ff=0;while(c!=EOF&&(c<'0'||c>'9'))ff^=(c=='-'),c=gc();if(c==EOF){_=1;return *this;}x=0;while(c!=EOF&&'0'<=c&&c<='9')x=(x<<3)+(x<<1)+c-48,c=gc();if(c==EOF)_=1;if(ff)x=-x;return *this;}}in;struct OUT{char buf[str],*s,*t;OUT():s(buf),t(buf+str){}~OUT(){fwrite(buf,1,s-buf,stdout);}void pt(char c){(s==t)?(fwrite(s=buf,1,str,stdout),*s++=c):(*s++=c);}OUT&operator<<(const char*s){while(*s)pt(*s++);return *this;}OUT&operator<<(char*s){while(*s)pt(*s++);return *this;}OUT&operator<<(string s){for(int i=0;s[i];i++)pt(s[i]);return *this;}template<typename T>OUT&operator<<(T x){if(!x)return pt('0'),*this;if(x<0)pt('-'),x=-x;char a[30],t=0;while(x)a[t++]=x%10,x/=10;while(t--)pt(a[t]+'0');return *this;}}out;}using namespace IO;
#define N 711
int n,cnt=0,head[N],siz[N];
#define M 20
#define base 1000000000
struct node{
    node(){clr(a,0);len=1;}
    ll a[M],len;
    il void operator = (node x){cpy(a,x.a);len=x.len;}
    il bool operator > (node x){
        if(len!=x.len)return len>x.len;
        Fdr(i,len,1)
            if(a[i]<x.a[i])return 0;
            else if(a[i]>x.a[i])return 1;
        return 1;
    }
    il void op(){
        printf("%d",a[len]);
        Fdr(i,len-1,1)printf("%10d",a[i]);
    }
}f[N][N];
node operator * (node c,int y){
    node x;
    Fur(i,1,x.len){
        x.a[i]+=c.a[i]*y;
        if(x.a[i]>=base)
            x.a[i+1]+=x.a[i]/base;
    }
    while(x.a[x.len]>=base){
        x.a[x.len+1]+=x.a[x.len]/base;
        x.a[x.len]%=base;
        ++x.len;
    }
    return x;
}
node operator * (node x,node y){
    node c;
    c.len=x.len+y.len-1;
    Fur(i,1,x.len)
        Fur(j,1,y.len){
            c.a[i+j-1]+=x.a[i]*y.a[j];
            if(c.a[i+j-1]>=base)
                c.a[i+j]+=c.a[i+j-1]/base,
                c.a[i+j-1]%=base;
        }

    while(c.a[c.len]>=base){
        c.a[c.len+1]+=c.a[c.len]/base;
        c.a[c.len]%=base;
        ++c.len;
    }
    return c;
}
struct edge{
    int to,nxt;
}e[N*2];
il void add(int x,int y){
    e[++cnt].to=y;e[cnt].nxt=head[x];head[x]=cnt;
}
void dfs(int x,int fa){
    f[x][0].a[1]=1;
    f[x][1].a[1]=1;
    siz[x]=1;
    fl(i,x)if(to!=fa){
        dfs(to,x);
        siz[x]+=siz[to];
        Fdr(j,siz[x],0)
            Fdr(k,MIN(j,siz[x]-siz[to]),MAX(1,j-siz[to]))
                f[x][j]=MAX(f[x][j],f[x][k]*f[to][j-k]);
    }
    Fur(i,1,siz[x])
        f[x][0]=MAX(f[x][0],f[x][i]*i);
}
int main(){
    fin("in");
    in>>n;
    int x,y;
    Fur(i,1,n-1)in>>x>>y,add(x,y),add(y,x);
    dfs(1,0);
    f[1][0].op();
}
LG 1411 树
comment评论
Search
search